UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	31

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded. Example – Is the reaction exothermic or endothermic? Give a reason for your choice. Mark scheme exothermic [1]
 COND a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.
- In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.
 (.....) is used to denote material that is not specifically required.
- **OR** designates alternative and independent ways of gaining the marks for the question. **or** indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2009	0620	31
1	(a) (i)	Acc	on or krypton or helium ept xenon and radon even though percentages are ve Thydrogen	ry small	[1]
	(ii)	wate	er and carbon dioxide		[2]
	(b) (i)		ur dioxide or lead compounds or CFCs or methane or nburnt hydrocarbons or ozone etc.	particulates	[1]
	(ii)		<u>mplete combustion</u> fossil fuel or a named fuel or a fuel that contains carbo	on	[1] [1]
	(iii)		gh temperature or inside engine gen and oxygen (from the air) react		[1] [1]
	(iv)		anges carbon monoxide to carbon dioxide es of nitrogen to nitrogen		[1] [1]
			symbol or word equation of the type: $0 + 2CO \rightarrow CO_2 + N_2$		[2]
		diox	a redox explanation – the oxides of nitrogen oxidise ide, are reduced to nitrogen	e carbon monox	ide to carbon [1] [1]
			$2NO \rightarrow N_2 + O_2$ $2CO + O_2 \rightarrow 2CO_2$		[1] [1]
					[Total: 10]
2	(a) pH exa	< 7 ample			[1] [1]
	exa	> 7 ample)T am	photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc		[1] [1]
	exa the	two r	H ₂ O, CO, NO narks are not linked, mark each independently photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.		[1] [1]
	(b) (i)	show	ws both basic and acidic properties		[1]
	(ii)		med strong acid med alkali		[1] [1]
					[Total: 9]

	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper
	га	ye 4	IGCSE – October/November 2009	0620	31
3	(a)		heat or roast or burn <u>in air</u> need both points for mark $ZnO + C \rightarrow Zn + CO$ or 2ZnO + C \rightarrow 2Zn + CO ₂ unbalanced ONLY [1]		[1]
	(b)	it lo zino NO	c is more reactive oses electrons and forms ions in preference to iron c corrodes not iron OT zinc rusts c zinc loses electrons and forms ions		[1] [1] [1]
		the	electrons move on to the iron iron cannot be oxidised or it cannot rust or it cannot lose ele EDIT correct Chemistry that includes the above ideas	ectrons	[1] [1]
	(c)	(i)	zinc atoms change into ions, (the zinc dissolves) copper(II) ions change into atoms, (becomes plated with co	opper)	[1] [1]
		(ii)	ions electrons		[1] [1]
					[Total: 10]
4	(a)		usion erent <i>M</i> r or ozone molecules heavier than oxygen molecules		[1]
		or	different densities or oxygen molecules move faster than ozo T oxygen is lighter or ozone heavier		[1]
		-	t fractional distillation by have different boiling points		[1] [1]
	(b)	(i)	from colourless (solution) to brown (solution)		[1] [1]
		(ii)	I ⁻ loses electrons (to form iodine molecules) must be in terms of electron transfer NOT oxidation number	r	[1]
		(iii)	they (electrons) are accepted by ozone or it is an electron acceptor		[1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
	IGCSE – October/November 2009 0620			
COI 2bp	ect structural skeleton ND 4bp around both carbon atoms and 2nbp around sulfur atom IE marks 2 and 3 can only be awarded if mark 1 has b	een scored	[1] [1] [1]	
sulfi all t any	er oon dioxide ur dioxide hree two [1] e ept correct formulae		[2]	
			[Total: 11]	
high Acc it in			[3]	
(ii) silic four	on		[1] [1]	
each ox looks or "tetrahed	to include: rmanium atom bonded 4 oxygen atoms ygen to 2 germanium atoms stated to be tetrahedral dral" scores mark even if diagram does not look tetrahe dent marking of three points	edral	[1] [1] [1]	
(c) (i) stru	ctural formula of Ge₄H₁₀ all bonds shown		[1]	
(ii) gerr wate	nanium(IV) oxide er		[1] [1]	
	-		[Total: 11]	

	Page 6	6	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2009	0620	31
6	(a) (i)		sulfur in air or oxygen eat a metal sulfide in air		[1]
	(ii)	or m	ch for wood pulp/cloth/straw or preserve food or sterili naking wine or fumigant or refrigerant ept making paper	sing	[1]
	(iii)	or va	adium(V) oxide accept vanadium oxide or V ₂ O ₅ anadium pentoxide ation state not essential but if given it has to be (V)		[1]
	(iv)	rate	too slow or rate not economic		[1]
	(v)	reac	tion too violent or forms a mist		[1]
	(b) (i)		water to yellow powder or to anhydrous salt ould go green		[1] [1]
	(ii)		nge from purple or pink plourless NOT clear		[1] [1]
	(iii)	reac	ts with <u>oxygen</u> in air		[1]
	nur ma ma nur volu	nber of ss of ss of nber o ume o	of moles of FeSO ₄ used = $9.12/152 = 0.06$ of moles of Fe ₂ O ₃ formed = 0.03^* one mole of Fe ₂ O ₃ = 160 g iron(III) oxide formed = $0.03 \times 160 = 4.8 \text{ g}$ of moles of SO ₃ formed = 0.03 of sulfur trioxide formed = $0.03 \times 24 = 0.72 \text{ dm}^3$ of iron(III) oxide greater than 9.12 g , then only marks 1	and 2 available	[1] [1] [1] [1] [1]

Apply ecf to number of moles of $Fe_2O_3{}^*$ when calculating volume of sulfur trioxide. Do not apply ecf to integers

[Total: 16]

Page 7		,	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2009	0620	31
7	(a)	(i)	heat cata			[1 [1
		(ii)	alke	quation that gives: ne + alkane		14
			or a	lkene + alkene + hydrogen		[1
			a co	rrect and balanced equation for the cracking of decane,	$C_{10}H_{22}$ but not b	ut-1-ene [1
	(iii)	wate	er or steam		[1
	(b)	(i)		$_{9}OH + 6O_{2} \rightarrow 4CO_{2} + 5H_{2}O$ ly error is balancing the oxygen atoms		[2 [1
		(ii)		nol + methanoic acid \rightarrow butyl methanoate + water ect products or reactants ONLY		[2 [1
	(c)	(i)	acce pena	ect structural formulae [1] each pt either propanol and $-OH$ in alcohol and acid alise once for CH_3 type diagrams either C_3H_8O or $C_3H_6O_2$ [0]		[2
		(ii)	to co	onserve petroleum or reduce greenhouse effect		[1
	(d)	hav	ve sar	ne boiling point		[1
						[Total: 13